
CHAPTER 1

Introduction: Orientation, problems, and goals

These lecture notes contain the definitions, theorems, propositions etc. discussed in
the lecture. Proofs are omitted. I will be grateful for your comments, questions, and in
particular, your corrections.
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CHAPTER 2

Elliptic boundary value problems

The material of this chapter follows in large parts the book by M. Taylor [Tay96],
in particular Chapter 4 (Sections 1 and 4) and Chapter 5 (Sections 7, 11, and 12). For
additional references on elliptic problems we refer to the book by Renardy and Rogers
[RR93] and the book by Wloka, Rowley, and Lawruk [WRL95].

2.1. The Neumann problem for the Laplace operator

Throught this chapter Ω ⊂ Rd is a connected, open, and bounded set with a C∞

boundary. This is to say that for every point x ∈ ∂Ω there exists an open neighborhood
U = U (x) and a mapping ϕ : U → Rd of class C∞ with C∞ inverse such that

ϕ(Ω∩U ) ⊂ Rd
+ = {x ∈ Rd : xd > 0} and ϕ(∂Ω∩U ) ⊂ {x ∈ Rd : xd = 0} ≡ Rd−1 .

The domain of the inverse mapping is ϕ(U ). Using the compactness of the boundary, we
know that we can select a finite number of such neighborhoods which will cover ∂Ω. We
have

∂Ω ⊂
M⋃
j=1

Uj

and we denote the corresponding mappings of Ω ∩Uj into the half space by ϕj. We will
refer to Ω as a smooth domain and to the functions ϕj as coordinate mappings. Note that
a smooth domain has a well-defined exterior unit normal field n along ∂Ω which is given
by the formula

n(x) = −
JTϕj(x)ed

|JTϕj(x)ed|
for x ∈ Uj

where Jϕj is the Jacobian matrix of the function ϕj and ed is the dth standard basis
vector, that is ed = (0, ..., 0, 1)T . This formula follows from the fact that plane tangent
to Ω at the point x ∈ ∂Ω ∩Uj is spanned by the d − 1 vectors of the form J−1

ϕj
(x)eq for

q = 1, ..., d− 1 and that J−1
ϕj

= Jϕ−1
j

.

The Neumann problem for the Laplacian is the boundary value problem consists in
finding a function u which satisfies

∆u = f in Ω ,

∂u

∂n
= 0 in ∂Ω ,

for a given function f . Here ∆ denotes the Laplacian in R, i.e.

∆ =
d∑
j=1

∂2

∂x2
j
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4 2. ELLIPTIC BOUNDARY VALUE PROBLEMS

and ∂u/∂n is the directional derivative of u in direction of the exterior unit normal n,
that is

∂u

∂n
(x) = n(x) · ∇u(x) .

We define a linear operator LN : H1(Ω)→ H1(Ω)′ by setting

(LNu, v) =

∫
Ω

∇u(x) · ∇v(x) dx = (∇u,∇v)L2(Ω) ,

for all u, v ∈ H1(Ω). Here H1(Ω) is the L2-based Sobolev space of order one. This
linear function space consists of all square integrable functions on Ω whose distributional
gradient is also square integrable. A norm in this space is given by

‖u‖2
H1(Ω) =

∫
Ω

|u(x)|2dx+

∫
Ω

|∇u(x)|2dx .

The linear space H1(Ω)′ is the dual space of H1(Ω) with respect to the L2 inner product

(u, v) =

∫
Ω

u(x)v(x) dx .

We observe the algebraic and topological inclusions H1(Ω) ⊂ L2(Ω) ⊂ H1(Ω)′.

Proposition 2.1.1. The map LN + 1 : H1(Ω)→ H1(Ω)′ is injective and surjective.
Furthermore the operator LN is self-adjoint and positive.

Hence the operator TN = (LN + 1)−1 : H1(Ω)′ → H1(Ω) is well-defined. Restricting
the domain of this operator to L2(Ω) and enlarging the co-domain to L2(Ω), the operator
TN : L2(Ω)→ L2(Ω) is compact because of Rellich’s Theorem.

Theorem 2.1.2. For any s ≥ 0 and σ > 0, the natural injection j : Hs+σ(Ω) →
Hs(Ω) is compact. This is to say that bounded sets in Hs+σ(Ω) are precompact in Hs(Ω).

Of course, to establish the compactness of TN one needs to apply this theorem with
s = 0 and σ = 1. Nevertheless, we chose to state a more general result, even though we
have not introduced the Sobolev spaces Hs(Ω) for s ∈ [0,∞) except for s = 0 and s = 1.
This will be done in the next section.

The spectral theorem for compact, self-adjoint operators on a Hilbert space tells us
that L2(Ω) has a orthonormal basis of eigenfunctions {uk} with corresponding eigenvalues
µk > 0. Furthermore, limk→∞ µk = 0. The equation

TNuk = µkuk , for k = 1, 2, 3, ...

implies uk ∈ H1(Ω) for all k ∈ N. Returning to the operator LN gives then

LNuk = λkuk , λk =
1

µk
− 1 .

Furthermore, one can show that for u ∈ H1(Ω)

LNu = −∆u

in the sense of distributions and also that

−∆uk = λkuk in D ′(Ω) .
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Here and henceforth, D ′(Ω) denotes the linear space of distributions on Ω. This is the
dual space of C∞0 (Ω) which is a linear space with the topology induced by the seminorms

sup
x∈Ω
|Dαu(x)| , α ∈ Nd

0 .

Eventually, we will show that the eigenfunctions on the Neumann Laplacian are smooth
functions (uk ∈ C∞(Ω)) and that they satisfy the homogeneous Neumann condition
∂uk/∂n = 0 in ∂Ω, k = 1, 2, ....

One big step toward the proof of this statement is the following proposition.

Proposition 2.1.3. For f ∈ L2(Ω) the function u = TNf satisfies u ∈ H2(Ω) and
∂u/∂n = 0 in ∂Ω. Furthermore, −∆u + u = f and there exists a constant C depending
only on Ω (and not on f)

‖u‖H2(Ω) ≤ C
{
‖f‖2

L2(Ω) + ‖u‖2
H1(Ω)

}
Of course, the Sobolev space H2(Ω) is the space of all L2(Ω) functions whose distri-

butional derivatives up to order 2 are in L2(Ω). This space is a Hilbert space with the
inner product

(u, v)2,Ω =
∑
|α|≤2

(Dαu,Dαv) .

2.2. Sobolev spaces on bounded regions

Initially we will focus on Sobolev spaces on the half space Rd
+ = {x ∈ Rd : xd > 0}.

For k ∈ N we set

(2.2.1) Hk(Rd
+) = {u ∈ L2(Rd

+) : Dαu ∈ L2(Rd
+) for |α| ≤ k}

This space is a Hilbert space with the inner product

(u, v)k,Rd+ =
∑
|α|≤k

∫
Rd+
Dαu(x)Dαv(x) dx

Sobolev functions defined on the half space can be extended to the full space without loss
of regularity.

Lemma 2.2.1. For all N ∈ N there exists a continuous extension map E : Hk(Rd
+)→

Hk(Rd) for k ≤ N − 1.

Corollary 2.2.2. The restriction operator ρ : Hk(Rd)→ Hk(Rd
+) is surjective.

Note that the subspace

{
u ∈ Hs(Rd) : u

∣∣∣
R+

= 0

}
is a closed subspace of Hs(Rd) for

all s ∈ R. Hence, an equivalent definition of Hk(Rd
+) is given by

(2.2.2) Hk(Rd
+) ≈ Hk(Rd)

/{
u ∈ Hk(Rd) : u

∣∣∣
R+

= 0

}
with the quotient norm

‖u‖Hs(Rd+) = inf
U=u in Rd+

‖U‖Hs(Rd) .
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Note that Hs(Rd
+) is defined as a quotient space and that this definition is applicable for

all s ∈ R. The equality u = 0 on Rd
+ has to be understood in the L2 sense or in the sense

of distributions.

Proposition 2.2.3. For s = k ∈ N the two definitions given by formulas (2.2.1) and
(2.2.2) coincide.

In the following we will use the abbreviation x′ = (x1, ..., xd−1).

Proposition 2.2.4. For s > 1/2 the trace operator τ : C∞0 (Rd)→ C∞0 (Rd−1) defined
by (τu)(x′) = u(x′, 0) can be extended to a continuous linear operator τ : Hs(Rd) →
Hs−1/2(Rd−1).

Proposition 2.2.5. The mapping τ is surjective for s > 1/2. In particular, for each
g ∈ Hs−1/2(Rd−1) there exists a u ∈ Hs(Rd) such that τu = g and there exists a positive
constant C depending only on s such that ‖u‖Hs(Rd) ≤ C‖g‖Hs−1/2(Rd−1).

The Sobolev spaces Hk(Ω) are introduced in a very similar fashion. We set

Hk(Ω) = {u ∈ L2(Ω) : Dαu ∈ L2(Ω) for |α| ≤ k}

This space is also a Hilbert space with the inner product

(u, v)k,Ω =
∑
|α|≤k

∫
Ω

Dαu(x)Dαv(x) dx

As before, an equivalent definition of Hs(Ω) is given by

Hs(Ω) ≈ Hs(Rd)
/{

u ∈ Hs(Rd) : u
∣∣∣
Ω

= 0
}

with the equivalent norm

‖u‖Hs(Ω) = inf
U=u in Ω

‖U‖Hs(Rd) .

Again, the second definition has the advantage that it works for all s ∈ R.
To define Sobolev spaces on the boundary we introduce a partition of unity {χj}Mj=1

subordinated to the covering {Uj}Mj=1 of the boundary which was introduced at the be-

ginning of Section 2.1. We have χj ∈ C∞0 (Uj) for j = 1, 2, ...,M and
∑M

j=1 χj(x) = 1 for
all x ∈ ∂Ω.

Definition 2.2.6. For s > 0 we define the Sobolev space

Hs(∂Ω) = {u ∈ L2(∂Ω) : (χju) ◦ ϕ−1
j ∈ Hs(Rd−1} .

A norm is given by

‖u‖Hs(∂Ω) =
M∑
j=1

∥∥(χju) ◦ ϕ−1
j

∥∥
Hs(Rd−1)

.

In order to prove the trace theorem for a region Ω, we will need the following trans-
formation formula.
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Definition 2.2.7. Let Ω and Ω′ be open and bounded sets in Rd. A bijection Φ :
Ω → Ω′ is a diffeomorphism if Φ ∈ C∞(Ω) and Φ−1 ∈ C∞(Ω′). The pull back operator
Φ∗ is defined by

Φ∗u = u ◦ Φ

and the push forward operator (Φ−1)∗ is defined by

(Φ−1)∗v = v ◦ Φ−1

for functions u and v defined on Ω′ and Ω, respectively.

Theorem 2.2.8. Suppose that Ω and Ω′ are bounded, open, and connected subsets of
Rd with a smooth boundary. Let Φ : Ω → Ω′ be a diffeomorphism and let s be a non-
negative real number. Then the pull back Φ∗ is a continuous linear mapping from Hs(Ω′)
to Hs(Ω) and the push forward (Φ−1)∗ is a continuous linear mapping from Hs(Ω) to
Hs(Ω′)

Theorem 2.2.9. For s > 1/2 the trace operator T : C∞(Ω)→ C∞(∂Ω) defined by

Tu = u
∣∣∣
∂Ω

can be extended to a continuous linear operator from Hs(Ω) onto Hs−1/2(∂Ω).

Corollary 2.2.10. For s = 1 we have

KerT = H̊1(Ω)

where H̊s(Ω) is the closure of the compactly supported smooth functions C∞0 (Ω) with re-
spect to the Hs(Rd) topology for s > 1/2.

Corollary 2.2.11. Let m ∈ N and s ∈ R such that s−m > 1/2. Then, there exists
a linear continuous operator

Tm : Hs(Ω)→ Hs−1/2(∂Ω)×Hs−3/2(∂Ω)× ...×Hs−m−1/2(∂Ω)

with the property that

τmu =

(
u
∣∣∣
∂Ω
,
∂u

∂n

∣∣∣
∂Ω
,
∂2u

∂n2

∣∣∣
∂Ω
, ...,

∂mu

∂nm

∣∣∣
∂Ω

)
.

2.3. Interior regularity

We introduce the N × N matrix differential operator P in Ω ⊂ Rd of order m with
smooth coefficients.

(2.3.1) P (x,D) =
∑
|α|≤m

aα(x)Dα aα(x) ∈ C∞(Ω,CN×N), |α| ≤ m

The principal symbol of P is the matrix polynomial Pm(x, ξ) =
∑
|α|=m aα(x)ξα since

the coefficients aα N × N are N × N matrices. Recall that α ∈ Nd
0 is a multiindex

α = (α1, ..., αd) whose components are non-negative integers and that ξα = ξα1
1 ξα2

2 ...ξαdd .

Definition 2.3.1. The operator (2.3.1) is elliptic if Pm(x, ξ)−1 exists for all x ∈ Ω
and ξ ∈ Rd \ {0}.
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Theorem 2.3.2. Suppose u ∈ L2(Ω), Pu = f ∈ Hk(Ω) for some k ∈ N0. Then
u ∈ Hm+k

loc (Ω) and for all U ⊂⊂ V ⊂⊂ Ω the estimate

‖u‖Hk+m(U) ≤ C
{
‖f‖Hk(V ) + ‖u‖Hm+k−1(V )

}
holds. Here U and V are open sets and C is a constant which depends on U, V,Ω,, and k
but not on u and f .

We write U ⊂⊂ V if U is a compact subset of V .

2.4. Boundary regularity: Reduction to a boundary value problem on the
half space

Let Bj(x,D) =
∑
|α|≤mj bα,j(x)Dα be differential operators of order mj ≤ m − 1 for

j = 1, 2, ..., l which are defined for x in a neighborhood V of ∂Ω in Ω. Here bα,j ∈
C∞(V ,CN×N). We consider the boundary value problem for the elliptic operator P , that
is

(2.4.1) P (x,D)u = f in Ω , Bj(x,D)u = gj in ∂Ω , j = 1, 2, ..., l

where f and gj are given function of specified regularity. For u ∈ Hm+k(Ω) we will try to
establish estimates of the form
(2.4.2)

‖u‖Hm+k(Ω) ≤ C

{
‖P (x,D)u‖Hk(Ω) +

l∑
j=1

‖Bj(x,D)u‖
Hm+k−mj−1/2(∂Ω)

+ ‖u‖Hm+k−1(Ω)

}

Given x ∈ ∂Ω there is a neighborhood U and a diffeomorphism ϕ : U → ϕ(U ) such

that ϕ(∂Ω ∩ U ) ⊂ Rd−1 and ϕ(Ω ∩ U ) ⊂ Rd+1
+ . For y ∈ ϕ(U ) we define the operators

P (y,D) and Bj(y,D) by

[P (x,D)u] ◦ ϕ−1 = P (y,D)(u ◦ ϕ−1) and [Bj(x,D)u] ◦ ϕ−1 = Bj(y,D)(u ◦ ϕ−1)

for j = 1, 2, ..., l. With y = ϕ(x) we define the constant coefficient operators

Px(D) = P (y,D) and Bj,x(D) = Bj(y,D)

for a given x ∈ ∂Ω ∩U .

Proposition 2.4.1. Suppose that for all x ∈ ∂Ω we have the estimate
(2.4.3)

‖u‖Hm+k(Rd+) ≤ C

{
‖Px(D)u‖Hk(Rd+) +

l∑
j=1

‖Bj,x(D)u‖
Hm+k−mj−1/2(Rd−1)

+ ‖u‖Hm+k−1(Rd+)

}

for all u ∈ C∞0 (Rd
+), k ∈ N0 where the constant is independent of x. If u ∈ Hm(Ω),

P (x,D)u ∈ Hk(Ω), Bj(x,D) ∈ Hm+k−mj−1/2(∂Ω) for j = 1, 2, ..., l, then u ∈ Hm+k(Ω)
and the estimate (2.4.2) holds.
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2.5. Elliptic boundary value problems on the half space with constant
coefficients

In this section we will establish the estimate (2.4.3) provided the boundary operators
Bj(D) satisfy certain conditions. All the work in this section will be done in the half
space. For simplicity we introduce new variables y = yd and x = (y1, ..., yd−1) and split
the differentiations into normal and tangential ones

P (D) =
∂m

∂ym
+

m−1∑
j=0

Aj(Dx)
∂j

∂yj

where Aj is a tangential operator of order m− j. The operator P will be transferred into
a first-order operator as follows. The Fourier multiplier Λ defined by

Λu(x) =
1

(2π)(d−1)/2

∫
Rd−1

〈ξ〉û(ξ)eiξ·xdξ

where 〈ξ〉 =
√

1 + |ξ|2 is used to introduce for a smooth vector-valued function u with N
components another vector-valued function v with Nm components by setting

v1 = Λm−1u, v2 = Λm−2∂u

∂y
, ...., vj = Λm−j ∂

j−1u

∂yj−1
, ..., vm =

∂m−1u

∂ym−1

Lemma 2.5.1. Given u ∈ C∞0 (Rd+1), we have P (D)u = f if and only if ∂v/∂y =
K(Dx)v + F where

F =



0
0
...
...
0
f


and K(Dx) =



0 ΛIN 0 . . . . . . 0
0 0 ΛIN . . . . . . 0
...

...
. . . . . .

...
...

...
. . . . . .

...
0 0 0 ΛIN
E1 E2 E3 . . . . . . Em


where Ej(Dx) = −Aj−1(Dx)Λ

j−m for j = 1, 2, ...,m are N ×N matrices.

One can show that K is a linear continuous operator from Hs+1(Rd−1) into Hs(Rd)
and that K(ξ) = K1(ξ) + KR(ξ) where K1(ξ) is homogeneous of degree one in ξ, that
is K1(λξ) = λK1(ξ) for all λ > 0 and KR(ξ) is uniformly bounded, that is |KR(ξ)| ≤ C
where C is a positive constant and | · | is a matrix norm. More specifically,

K1(ξ) =



0 |ξ|IN 0 . . . . . . 0
0 0 |ξ|IN . . . . . . 0
...

...
. . . . . .

...
...

...
. . . . . .

...
0 0 0 |ξ|IN
Ẽ1 Ẽ2 Ẽ3 . . . . . . Ẽm


with Ẽj = −Ãj−1|ξ|j−m ,

where Ãj(ξ) denotes the principal part of Aj(ξ) which consists of all terms of order m− j,
for j = 0, ...,m− 1. We observe that K1 ∈ C∞(Rd−1 \ {0}).



10 2. ELLIPTIC BOUNDARY VALUE PROBLEMS

Lemma 2.5.2. The operator P (D) is elliptic if and only if for all ξ ∈ Rd−1 \ {0} the
matrix K1(ξ) has non purely imaginary eigenvalues. In particular we have that

det[iηINm −K1(ξ] = detPm(ξ, η) = det

[
(iη)m +

m−1∑
j=0

Ãj(ξ)(iη)j

]
.

Similarly the boundary conditions Bj(x,D)u
∣∣∣
y=0

= gj for j = 1, ..., l can be reduced in

a way so that they become essentially conditions of order zero. We expand the operators

Bj(x,D) = Bj

(
Dx,

∂

∂y

)
=
∑
k≤mj

bjk(Dx)
∂k

∂yk

for j = 1, 2, ..., l, where the order of the tangential operator bjk(Dx) is mj − k. Note that
the matrices bjk are of type pj ×N where pj is a non-negative integer less than or equal
to N . Then, as in Lemma 2.5.1 we have that

Bj

(
Dx,

∂

∂y

)
u
∣∣∣
y=0

= gj ⇐⇒
mj∑
k=0

bjk(Dx)Λ
k−mjvk+1

∣∣∣
y=0

= Λm−mj−1gj =: hj ,

for j = 1, 2, ..., l. Let B = B(Dx) be now the (block) matrix with blocks bjk(Dx)Λ
k+mj

which can be considered as a matrix with p =
∑l

j=1 pj rows and Nm columns. The
boundary condition is than rewritten as

B(Dx)v = h where h = [h1 h2 .... hl]
T

and B(ξ) = B0(ξ) + BR(ξ) where B0(ξ) is homogeneous of degree zero in ξ and Br(ξ)
decays for large |ξ| as |ξ|−1.

The desired estimate (2.4.3) can then be written as

(2.5.1) ‖v‖Hk+1(Rd+) ≤ C
{
‖Lv‖Hk(Rd+) + ‖Bv(0)‖Hk+1/2(Rd−1) + ‖v‖Hk(Rd+)

}
where L = ∂/∂y −K(Dx).

The spectral projection onto the eigenspace corresponding to all eigenvalues with
positive real part is given by

(2.5.2) E+(ξ) =
1

2πi

∫
γ(ξ)

(ζINm −K1(ξ))−1dζ ,

for ξ ∈ Rd−1 \ {0}, where γ(ξ) is a smooth, simple, closed curve in the right half plane
which includes the eigenvalues of K1(ξ). The matrix function E+ is smooth for all ξ 6= 0
and homogeneous of degree zero.

Lemma 2.5.3. The matrix function A (ξ) = (2E+(ξ)− INm)K1(ξ) is homogeneous of
degree one in ξ and all its eigenvalues has positive real part.

Proposition 2.5.4. The matrix function

P (ξ) = |ξ|
∫ 0

−∞
etA (ξ)HetA (ξ) dt
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is a Hermitian positive definite matrix with entries in C∞(Rd−1\{0}) and is homogeneous
of degree zero in ξ. Furthermore,

2<[P (ξ)A (ξ)] := P (ξ)A (ξ) + A (ξ)HP (ξ) =
1

2
|ξ|INm .

The Sobolev space H(k,s)(Rd
+). For a non-negative integer k and s ∈ R we set

H(k,s)(Rd
+) =

{
u ∈ E ′(Rd) :

∫ ∞
0

∫
Rd−1

|Dj
yû(ξ, y)|2〈ξ〉2(k−j+s)dξdy <∞ for j = 0, ..., k

}
,

where û(ξ, y) denotes the Fourier transform of u(x, y) with respect to the x variables and

〈ξ〉 =
√

1 + |ξ|2. This space is a Hilbert space and the norm is given by

(2.5.3) ‖u‖2
(k,s) =

k∑
j=0

∫ ∞
0

∫
Rd−1

|Dj
yû(ξ, y)|2〈ξ〉2(k−j+s)dξdy

Proposition 2.5.5. If for g ∈ C∞0 (Rd−1) and s ∈ R the inequality

(2.5.4) |g|2Hs+1/2 ≤ C
[
|B0g|2Hs+1/2 + |E+g|2Hs+1/2

]
holds, then for all non-negative integers k and real numbers σ < s we have

‖u‖(k,s) ≤ C
[
‖Lu‖2

(k−1,s) + |Bu(0)|2Hk+s−1/2 + ‖u‖2
(0,σ)

]
for all u ∈ C∞0 (Rd

+).

Proposition 2.5.6. The inequality (2.5.4) is equivalent to the following conditions.
(i) For all ξ ∈ Rd−1 \ {0} kerB0(ξ) ∩ kerE+(ξ) = {0}.
(ii) For all ξ ∈ Rd−1 \ {0} there is no non-trivial bounded solution on the interval [0,∞)
to the system of ordinary differential equations of order one with parameter ξ

dϕ

dy
= K1(ξ)ϕ

subject to the boundary condition B0(ξ)ϕ(0) = 0.
(iii) For all ξ ∈ Rd−1 \ {0} there is no non-trivial bounded solution on the interval [0,∞)
to the ordinary differential equation(s) of order m with parameter ξ

dmΦ

dym
+

m−1∑
j=0

Ãj(ξ)
djΦ

dyj
= 0

subject to the boundary conditions B̃j(ξ)ϕ(0) = 0 for j = 1, 2, ..., l.

Corollary 2.5.7. For all ξ ∈ Rd−1\{0} the following three conditions are equivalent.
(i) For all η ∈ Cp there exists a unique solution ϕ ∈ L2(R+) to the system of ordinary
differential equations of order one with parameter ξ

dϕ

dy
= K1(ξ)ϕ

subject to the boundary condition B0(ξ)ϕ(0) = η.
(ii) For all ηj ∈ Cpj for j = 1, 2, ..., l there exists a unique solution Φ ∈ L2(R+) to the
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ordinary differential equation(s) of order m with parameter ξ

dmΦ

dym
+

m−1∑
j=0

Ãj(ξ)
djΦ

dyj
= 0

subject to the boundary conditions B̃j(ξ)ϕ(0) = ηj for j = 1, 2, ..., l.
(iii) The mapping B0(ξ) : kerE+(ξ)→ Cp is bijective.

Note that (iii) implies that p = dim kerE+(ξ).

Definition 2.5.8. The boundary value problem P (D), B1(D), ..., Bl(D) with constant
coefficients on the half space is regular, if one of the conditions of Corollary 2.5.7 is
satisfied.

2.6. The Lopatinskii condition and the Fredholm property

Definition 2.6.1. The boundary value problem (P (x,D), B1(x,D), ..., Bl(x,D)) sat-
isfies the Lopatinskii condition, if for all x ∈ ∂Ω the constant coefficient problem
(P (x,D), B1(x,D), ..., Bl(x,D)), after a transformation to the half space, is a regular
boundary value problem. In this case we say that the boundary value problem is a regular
elliptic problem.

Remark 2.6.2. The constant coefficient problem (P (x,D), B1(x,D), ..., Bl(x,D)) can
be analyzed, even without a coordinate transformation to the half space. The Lopatinskii
condition can be formulated as follows: For all x ∈ Ω and ηj ∈ Cpj there exists a unique
solution to the frozen problem

P (x,D)u = 0 in {x ∈ Rd : (x− x) · n(x) < 0} ,
Bj(x,D)u = ηj in {x ∈ Rd : (x− x) · n(x) = 0}, for j = 1, 2, ..., l ,

of the form u(x) = eiξ·(x−x)v(y) with ξ ∈ Rd \ {0}, ξ · n(x) = 0, y = (x − x) · n(x), and
v(y)→ 0 as y → −∞.

For k ≥ 0, a non-negative integer define the operator

T : Hm+k(Ω)→H k := Hk(Ω)×Hm+k−m1−1/2(∂Ω)× · · · ×Hm+k−ml−1/2(∂Ω)

by

(2.6.1) Tu = (P (x,D)u,Bj(x,D)u, ..., Bl(x,D)u) .

Note that T is a continuous a linear operator from Hm+k(Ω) into Hk. The following
theorem is the main result of this chapter.

Theorem 2.6.3. The following two statements are equivalent.
(i) The boundary value problem (P (x,D), B1(x,D), ..., Bl(x,D)) satisfies the Lopatinskii
condition.
(ii) The operator T is a Fredholm operator, that is dim kerT <∞ and the range of T is
closed with finite co-dimension.
Furthermore, each of them implies that for all u ∈ Hm+k(Ω) there exists a constant
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depending only on the non-negative integer k, Ω, P , and the boundary operators Bj for
j = 1, 2, .., l such that
(2.6.2)

‖u‖Hm+k(Ω) ≤ C

{
‖P (x,D)u‖Hk(Ω) +

l∑
j=1

‖Bj(x,D)u‖
Hm+k−mj−1/2(∂Ω)

+ ‖u‖Hm+k−1(Ω)

}
.

The proof of this Theorem is broken down into several propositions. At first we note
that the last statement of the theorem follows from Proposition 2.4.1 and 2.5.5. An
important part of statement (i) is equivalent to statement (ii) follows from

Proposition 2.6.4. Let X, Y, Z be Hilbert spaces such that the embedding X ⊂ Y is
compact and that the operator T : X → Z is linear and continuous. Then dim kerT <∞
and T (X) is closed if and only if there exists a constant c > 0 such that

‖x‖X ≤ c[‖Tx‖Z + ‖x‖Y ] for all x ∈ X .

Applying this proposition one sees that (2.6.2) is equivalent to dim kerT < ∞ and
range of T closed. Hence, the only thing left is to show that the Lopatinskii condition
implies that the image of T has finite co-dimension and vice versa. In this context the
following result from Functional Analysis is of interest.

Proposition 2.6.5. The linear continuous operator T : X → Z is Fredholm if and
only if there exist linear and continuous operators S1 and S2 from Z to X such that

S1T = I +K1 and TS2 = I +K2

where K1 : X → X and K2 : Z → Z are compact operators.

The operators S1 and S2 are a left Fredholm inverse and a right Fredholm inverse,
respectively. As a matter of fact, one can show that the conditions of Proposition 2.6.4
are equivalent to the existence of a left Fredholm inverse. Hence, the following result is
of interest.

Proposition 2.6.6. If the boundary value problem (P (x,D), B1(x,D), ..., Bl(x,D))
satisfies the Lopatinskii condition, then there exists a right Fredholm inverse for the op-
erator T .

This proposition implies the proof of the important implication (i) ⇒ (ii) of Theorem
2.6.3.

Corollary 2.6.7 (Weyl’s Lemma). If u ∈ Hm(Ω), P (x,D)u ∈ C∞(Ω), and Bj(x,D)u ∈
C∞(∂Ω) for j = 1, 2, ..., l, then u ∈ C∞(Ω).

Corollary 2.6.8. If the statements of Theorem 2.6.3 are true for P (x,D) and
Bj(x,D) for j = 1, 2, ..., l, then they are also valid for all operators P̃ with boundary

conditions B̃j as long as those have the same principal symbols as P and Bj for j = 1, ..., l.

Corollary 2.6.9. The index of the operator T defined in (2.6.1), i.e.

ind T = dim ker T− dim coker T
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is independent of k. Furthermore the index is stable with respect to small perturbations
of the coefficients of the operator and the boundary conditions. Also kerT is a finite-
dimensional subspace of C∞(Ω)N and the image of T is the orthogonal complement in
L2(Ω)N × L2(∂Ω)p of a finite-dimensional subspace of C∞(Ω)N × C∞(∂Ω)p.

For clarity we have added an upper index for the vector-valued functions which occur
in this setting. The function u maps from Ω into CN and the vector P (x,D)u has N
components and the vector B1(x,D)u, ..., Bl(x,D)u has p components.

2.7. Strongly elliptic operators

Definition 2.7.1. An N × N elliptic operator (in the sense of Definition 2.3.1) of
even order m = 2ν is strongly elliptic if and only if there exists a positive constant such
that

<Pm(x, ξ) ≥ c|ξ|m for all x ∈ Ω and ξ ∈ Rd .

Recall that for all N × N matrix A, <A denotes its Hermitian part and that A ≥ c
means vHAv ≥ c|v|2 for all v ∈ CN .

Definition 2.7.1. The Dirichlet boundary conditions for a strongly elliptic P are

B1u = u , B2u =
∂u

∂n
, ... , Bνu =

∂ν−1

∂nν−1
.

Here n is a vector field in Rd which coincides with the exterior unit normal vector field to
Ω on ∂Ω.

Proposition 2.7.2. For strongly elliptic operator P the Dirchlet boundary conditions
satisfy the Lopatinskii condition.

In order to find simpler ways of verifying the Lopatinskii condition, we will consider a
special coordinate transform. The goal is to essentially avoid the transformation into the
half space. For that purpose we introduce the oriented distance function for our smooth
domain Ω

bΩ(x) = dΩ(x)− dRd\Ω(x) ,

dA(x) = infy∈A |x − y| is the distance function. The following result is taken from the
book of M. Delfour and J.-P. Zolésio [DZ11, Chapter 7, Theorem 8.2] where much more
material concerning the oriented distance function can be found.

Theorem 2.7.3. The function bΩ is smooth in a neighborhood V of ∂Ω in Rd and
∇bΩ(x) = n(x) for all x ∈ ∂Ω.

With the help of the oriented distance function we will construct special coordinate
mappings. Fix x ∈ ∂Ω. Due to our assumptions on the set Ω there exists a coordinate
mapping ϕ : U (x)→ Rd such that

ϕ(Ω ∩U (x) ⊂ Rd
+ and ϕ(∂Ω ∩U ) ⊂ {y ∈ Rd : yd = 0}

Without loss of generality we have U (x) ⊂ V . Define now for x ∈ U (x)

ψ(x) = (ϕ1(z), ..., ϕd−1(z), bΩ(x)) = (ϕ′(z), bΩ(x)) , z = x− bΩ(x)∇bΩ(x) .
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Here ϕj denotes the jth component of the vector-valued function ϕ and ϕ′ = (ϕ1, ..., ϕd−1).
Note that z = z(x) is a projection of x on ∂Ω. One can show that ψ is a coordinate
mapping, that is ψ is of class C∞ on U (x) and it has a C∞ inverse.

The Jacobian matrix of ψ is

Jψ(x) =

[
Jϕ′(z)[I −∇bΩ(x)∇bTΩ(x)− bΩ(x)∇2bΩ(x)]

∇bΩ(x)

]
Given a diffeomorphism Φ : Ω→ Ω′ (see Definition 2.2.7) we have

[P (x,D)u] ◦ Φ−1 = P (Φ−1(y), JΦ(Φ−1)D)(u ◦ Φ−1)

where Jφ is the Jacobi matrix (derivative) of Φ that is

JΦ =

(
∂φj
∂xk

)
1≤j,k≤d

Note that a tangent vector w ∈ TxΩ transfers into the tangent vector JΦ(x)w ∈ TΦ(x)Ω.

A cotangent vector ξ ∈ T ∗xΩ′ becomes J−TΦ (x)ξ ∈ T ∗Φ(x)Ω
′. Here A−T is the transpose of

the inverse of the square matrix A.

Proposition 2.7.4. The principal symbol of an operator P transforms correspondingly
to the transformation rule for the cotangent bundle. With y = Φ(x), the principal symbol
Pm(x, ξ) transforms into P(y, η) = Pm

(
Φ−1(y), JTΦ (Φ−1(y))η

)
.

Observe that x = Φ−1(y) and ξ = JTΦ (Φ−1(y))η, that is η = J−TΦ (x)ξ.

Corollary 2.7.5. Under the coordinate transformation ψ defined above, the principal
symbol of our differential operator P (x,D) can be written in the form

Pm(x, ξ + τn(x)) for all x ∈ U (x)

Hence, in order to verify the Lopatinskii condition it suffices to work with the ordinary
differential operators

Pm

(
x, ξ − n(x)

1

i

d

dy

)
and B̃j

(
x, ξ − n(x)

1

i

d

dy

)
for j = 1, 2, ..., l. No explicit transformation of the operator into the half space is neces-
sary.

2.8. Stationary linear elasticity: an elliptic system of order 2

The region Ω ⊂ R3 is now considered as an elastic body and the function u : Ω→ R3

measures the (elastic) displacement due to external forces. The Cauchy stress tensor is
defined by

σ(u)jk =
3∑

l,m=1

ajklm(x)elm ,

where elm = [∂lum + ∂mul]/2 is the strain tensor. Note that the strain tensor is the
symmetric Jacobian of u. Suppose that f : Ω→ R3 is a force acting on the elastic body.
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The equations of stationary linear elasticity are

(2.8.1) −
3∑

k=1

∂σ(u)jk
∂xk

= fj , j = 1, 2, 3 .

The tensor of material stiffness ajklm is a fourth order tensor with real components and
satisfies the following symmetry relations.

ajklm = ajkml = akjlm = almjk ,

which means there are up to 21 different coefficients which capture the elastic properties
of the medium. Furthermore, this tensor is assumed to be positive definite, that is, there
exists a positive constant c such that

3∑
j,k,l,m=1

wjka
jklmwlm ≥ c

3∑
k,j=1

|wjk|2 , for all x ∈ Ω ,

for all real symmetric 3×3 matrices (wjk). This property can be used to establish the fact

that the operator E(x,D) = −
3∑

k=1

∂σ(u)jk
∂xk

is strongly elliptic. Because of the symmetry

relations, one can rewrite the operator with a 6× 6 positive definite coefficient matrix A
instead of the fourth order tensor. For that purpose one groups the first two indices and
the last two indeces of the of the tensor ajklm into pairs and re-labels them as follows

11→ 1, 22→ 2, 33→ 3, 23 = 32→ 4, 31 = 13→ 5, 12 = 21→ 6 .

With the operator

D(∂) =


∂1 0 0
0 ∂2 0
0 0 ∂3

0 ∂3 ∂2

∂3 0 ∂1

∂2 ∂1 0


the equation (2.8.1) turns into

(2.8.2) −D(∂)TA (x)D(∂)u = f in Ω .

We discuss now the Dirichlet problem for the stationary equations of elasticity, that is
the equation above is complemented by the boundary condition

u = g in ∂Ω .

Since the operator E is strongly elliptic, the Dirichlet boundary condition satisfies the
Lopatinskii condition, see Proposition 2.7.2. From Theorem 2.6.3 we know that, given a
non-negative integer k, there exists a constant C such that

‖u‖Hk+m(Ω) ≤ C
{
‖E(x,D)u‖Hk(Ω) + ‖u‖Hk+3/2(∂Ω) + ‖u‖Hk+1(Ω)

}
for all u ∈ H2+k(Ω)3. Furthermore, the operator T : H2+k(Ω)3 → Hk(Ω)3 ×H3/2+k(∂Ω)3

defined by Tu = (E(x,D)u, u|∂Ω) is a Fredholm operator.
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We claim that kerT = {0}. To see this one can use the fact that u ∈ kerT implies
that u ∈ C∞(Ω)3 by Corollary 2.6.9. Furthermore, using integration by parts and the
positive definiteness of A implies for all u ∈ kerT that

0 =

∫
Ω

E(x,D)u · u(x) dx =

∫
Ω

A (x)D(∂)u(x)D(∂)u(x) dx

−
∫
∂Ω

D(n(x))TA (x)D(∂)u(x)u(x) ds

=

∫
Ω

A (x)D(∂)u(x)D(∂)u(x) dx ≥ C

∫
Ω

|[∇u]s(x)|2 dx .

(2.8.3)

This implies that the symmetric Jacobian ([∇u]sjk) = (ejk) vanishes in Ω. The follow-
ing result know as Korn’s first inequality shows that this implies that u ≡ 0. For the
formulation we will use the Sobolev space H̊1(Ω), see Corollary 2.2.10.

Proposition 2.8.1. Suppose that u ∈ H̊1(Ω). Then

1

3

∫
Ω

|∇u(x)|2 dx =
1

3

3∑
j,k=1

∫
Ω

|∂juk(x)|2 dx ≤
∫

Ω

|D(∂)u(x)|2 dx .

In order to solve the Dirichlet problem we need also to determine the Co-kernel of T ,
that is the orthogonal complement of T (H2+k(Ω)) in L2(Ω)3×L2(∂Ω)3. For that purpose

we define a linear, unbounded operator P on L2(Ω) by setting D(P) = H2(Ω)3∩H̊1(Ω)3

and Pu = E(x,D)u for all u ∈ D(P).
We will show that P is self-adjoint, that is P∗ = P where P∗ is the Hilbert space

adjoint of P in the sense of unbounded operators. Recall that the definition of the domain
of the domain of P∗ is

(2.8.4) D(P∗) = {v ∈ L2(Ω)3 : |(Pu, v)| ≤ C(v)‖u‖L2(Ω)}

For the proof of self-adjointness of P via the Green formula, the following result is
needed. For that we recall the Sobolev space Hm,k(Rd

+) and its norm introduced in
formula (2.5.3). With the introduction of local normal coordinates in the previous section
we can introduce this Sobolev space also in a neighborhood of the boundary ∂Ω in Ω. Let
V be the neighborhood of the boundary ∂Ω introduced in Theorem 2.7.3. With the local
coordinate mapping ψ, this neighborhood V is diffeomorphic to the set (−δ, δ)× ∂Ω for
some δ > 0. Set C = V ∩ ∂Ω and for k ∈ N0 and s ∈ R

Hk,s(C ) =

{
u ∈ E(Rd) : ‖u‖2

(k,s) =
k∑
j=0

∫ δ

0

‖Dj
yu(·, y)‖2

Hk−j+s(∂Ω)dy <∞

}
.

The following result is an extension of Proposition 2.4.1.

Proposition 2.8.2. Suppose that P (x,D) is an elliptic operator of order m and
{P (x,D), Bj(x,D), j = 1, ..., l} is a regular elliptic boundary value problem. If u ∈
H(m,σ)(C ) for some σ ∈ R, P (x,D) ∈ H(k,s)(C ), Bj(x,D)u ∈ Hm+k−mj−1/2+s(∂Ω) for
j = 1, 2, ..., l, then u ∈ H(m,σ)(C ) together with the corresponding estimate.

The proof of this proposition follows with the techniques developed in Section 2.5.
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Corollary 2.8.3. If u ∈ L2(Ω), P (x,D)u ∈ L2(Ω), and Bj(x,D)u ∈ Hm−mj−1/2(∂Ω),
then u ∈ Hm(Ω).

Now we return to the operator P defined above. In order to determine D(P∗) we
will need, that for u, v ∈ H2(Ω)3 we have

(2.8.5) (E(x,D)u, v)Ω − (u,E(x,D)v)Ω = (u,Nv)∂Ω − (Nu, v)∂Ω .

Here (·, ·)A denotes the scalar product in L2(A) and

(Nu)(x) = D(n(x))TAD(∂)u(x) = σ(u)n(x) , x ∈ ∂Ω

denotes the Neumann operator in the context of stationary elasticity which occurred
already in (2.8.3). Because of the similarity of (2.8.5) with the second Green formula, this
formula is also referred to as Green formula. It is a feature of all regular elliptic boundary
value problems that such a Green formula can be found. As we will see with our example
for stationary elasticity, this formula is a useful tool to determine the cokernel of the
Fredholm operator T .

Note that formula (2.8.5) is also valid for u ∈ D(P) and v ∈ L2(Ω)3 and E(x,D)v ∈
L2(Ω)3. In this case one can show that v|∂Ω ∈ H−1/2(∂Ω)3. In view of formula (2.8.5) one
needs for the estimate in the definition (2.8.4) to hold that v ∈ L2(Ω)3, E(x,D)v ∈ L2(Ω)3

and that v|∂Ω = 0. Corollary 2.8.3 implies that v ∈ H2(Ω)3 and thus D(P∗) = D(P).
From formula (2.8.5) we infer that (Pu, v)Ω = (u,Pv)Ω which shows that P is self-
adjoint.

Since we know that kerT = ker P = {0}, using the formula

range P∗ = ker P⊥

and the self-adjointness proves that P is surjective. Hence, the operator T : H2(Ω) →
L2(Ω)3 ×H3/2(∂Ω)3 is surjective. Hence indT = 0. Since the index of the operator does
not depend on k and the kerT can only become smaller with increasing k, we have shown
that the operator T : H2+k(Ω)→ Hk(Ω)3 ×H3/2+k(∂Ω)3 is surjective for all k ∈ N.

A similar analysis can be made for the Neumann problem of stationary elasticity, that
is for the problem

E(x,D)u = f in Ω , Nu = g in ∂Ω .

Throughout our lectures we have acquired all the necessary tools, except for the following
version of Korn’s second inequality.

Proposition 2.8.4. If u ∈ H1(Ω)3, E(x,D)u ∈ L2(Ω)3 and Nu|∂Ω = 0, then there
exists a constant C such that

‖u‖H1(Ω) ≤ C

∫
Ω

|D(∂)u(x)|2 dx .



CHAPTER 3

Hyperbolic systems of partial differential equations

3.1. First order systems: Definitions

Throughout this chapter the space variable will be denoted by x ∈ Rd and the time
will be t ∈ [0,∞) = R+. Given matrix functions Aj, D : [0,∞) × Rd → CN×N for
j = 0, 1, ..., d a differential operator of first order is defined by

P (t, x;D) = A0(t, x)
∂

∂t
+

d∑
j=1

Aj(t, x)
∂

∂xj
+D(t, x) .

The principal part of the operator is

P1(t, x;D) = A0(t, x)
∂

∂t
+

d∑
j=1

Aj(t, x)
∂

∂xj

and the principal symbol is

P1(t, x; τ, ξ) = iA0(t, x)τ + i
d∑
j=1

Aj(t, x)ξj +D(t, x) .

Definition 3.1.1. The operator P is symmetric hyperbolic if the matrices Aj, j =
0, 1, ..., d are Hermitian and the matrix A0 is uniformly positive definite, that is there
exists a positive constant such that wHA0(t, x)w ≥ c|w|2 for all (t, x) ∈ [0,∞) × Rd and
w ∈ CN .

Definition 3.1.2. The operator P is strictly hyperbolic if for all ξ ∈ Sd−1 = {ξ ∈
Rd : |ξ| = 1} and (t, x) ∈ [0,∞)× Rd the matrix

(A0(t, x))−1

d∑
j=1

Aj(t, x)ξj

has only simple real eigenvalues.
The operator P is constantly hyperbolic if the eigenvalues are real, semi-simple and

their algebraic multiplicity does not change with (t, x, ξ).

Recall that eigenvalues are semi-simple if their algebraic and geometric multiplicities
coincide.

3.2. The apriori estimate for symmetric hyperbolic systems

Given X ⊂ Rd, recall the Sobolev space

W 1
∞(X) =

{
u ∈ L∞(X) :

∂u

∂xj
∈ L∞(X) for j = 1, 2, ..., d

}
19
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In what follows we abbreviate Q = (0, T )× Rd where T is a positive number or ∞.

Lemma 3.2.1. Suppose that u ∈ L∞(Q). Then u ∈ W 1
∞(Q) if and only if u is Lipschitz,

that is there exists a positive constant L such that |u(s, x)− u(t, y)| ≤ L[|t− s|+ |x− y|]

Proposition 3.2.2. Suppose that P is symmetric hyperbolic, that the coefficients Aj ∈
W 1
∞(Q) for j = 0, ..., d, and that D ∈ L∞(Q). Then there exists constants C > 0 and

γ0 > 0 such that

‖e−γTu(T )‖2
L2(Rd) + γ‖e−γtu‖2

L2(Q) ≤
1

γ
‖e−γtP (t, x;D)u‖2

L2(Q) + ‖u(0)‖2
L2(Rd)

for all u ∈ H1(Q) and γ ≥ γ0.

By the trace theorem (Theorem 2.2.4), we know that u(t) ∈ H1/2(Rd) for 0 ≤ t ≤ T
so all expressions in the estimate above are well defined.

Note that the function space H1(Q) can be expressed as the intersection of two func-
tions spaces of Hilbert space valued functions of one variable. This approach is useful to
show that for u ∈ H1(Q) the expression u(t) is defined as an L2 function.

H1(Q) = H1(0, T ;L2(Rd)) ∩ L2(0, T ;H1(Rd))

where

L2(0, T ;H1(Rd)) =

{
u(t) ∈ H1(Rd) for 0 < t < T :

∫ T

0

‖u(t)‖2
H1(Rd)dt <∞

}
and

H1(0, T );L2(Rd)) =

{
u(t), u′(t) ∈ L2(Rd) for 0 < t < T :

∫ T
0
‖u(t)‖2

L2(Rd)
dt <∞∫ T

0
‖u′(t)‖2

L2(Rd)
dt <∞

}
.

Here u′(t) denotes the distributional derivative of the L2(Rd) valued function u(t) with
respect to t. By definition this means that for all function ψ ∈ C∞0 (0, T ;L2(Rd)) we have∫ T

0

(u′(t), ψ(t))L2(Rd)dt = −
∫ T

0

(u(t), ψ′(t))L2(Rd)dt

where ψ′(t) satisfies

‖ψ(t+ h)− ψ(t)− ψ′(t)h‖L2(Rd) = o(h) as h→ 0

for 0 < t < T . Since every function in H1(0, T ) is continuous, one infers that every
function in H1(Q) is also in C([0, T ], L2(Ω)).

3.3. Existence and uniqueness of weak solutions to symmetric hyperbolic
systems

Throughout this section we will assume that P is symmetric hyperbolic with coeffi-
cients Aj ∈ W 1

∞(Q,CN×N) and D ∈ L∞(Q,CN×N). Let u, v ∈ H1(Q). Then

(Pu, v)L2(Q) = (u, P ∗v)L2(Q) + (A0u, v)L2(Rd)

∣∣∣t=T
t=0
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where

P ∗v = − ∂

∂t
[A0v](t, x)−

d∑
j=1

∂

∂xj
[Ajv](t, x) + [DHv](t, x)

Lemma 3.3.1. The operator −P ∗ is symmetric hyperbolic and there exists positive
constants C and γ0 such that

‖v(0)‖2
L2(Rd) + γ‖e−γtv‖2

L2(Q) ≤ C

{
1

γ
‖e−γtP ∗v‖2

L2(Q) + ‖e−γTv(T )‖2
L2(Rd)

}
for γ ≥ γ0 and all v ∈ H1(Q).

For the time being we restrict ourselves to the case T <∞.

Proposition 3.3.2. The initial value problem Pu = f ∈ L2(Q), u(0, ·) = g ∈ L2(R2)
admits a weak solution u ∈ L2(Q) ∩ C([0, T ], H−1(Rd)).

Theorem 3.3.3. The weak solution u satisfies u ∈ C([0, T ], L2(Rd)) and it is unique
and satisfies the estimate

‖u(T )‖L2(Rd) + ‖u‖L2(Q) ≤ CT
{
‖f‖L2(Q) + ‖g‖L2(Rd)

}
The proof of this Theorem will be performed by means of regularization. This is a

technique developed by K. O. Friedrichs and applied to symmetric hyperbolic systems
in his classical work [Fri54]. Since we are dealing with an initial value problem, we will
perform the regularization only with respect to x.

Let ϕ ∈ C∞0 (Rd) such that
∫
ϕ(x) dx = 1, ϕ(x) = ϕ(−x), ϕ(x) ≥ 0 for all x ∈ Rd and

ϕ(x) = 0 for |x| ≥ 1. Then introduce the set of functions

ϕε(x) =
1

εd
ϕ
(x
ε

)
and for a function u ∈ L1,loc(R

d,CN), set

u(ε)(x) = [ϕε ∗ u](x) =

∫
Rd
ϕε(x− y)u(y) dy .

Since the convolution with smooth, compactly supported functions is defined even for
distributions one can define the regularization u(ε) for u ∈ D(Rd) by

u(ε)(x) = 〈ϕ(x− ·), u〉 .

Lemma 3.3.4. Let s ∈ R. For u ∈ Hs(Rd), we have ‖u(ε) − u‖Hs(Rd) → 0 for ε→ 0.

The same result holds for u ∈ Lp(Rd) for 1 ≤ p <∞, that is ‖u(ε) − u‖Lp(Rd) → 0 and

if u ∈ C(Rd), then u(ε) converges to u uniformly on compact subsets.
The proof of Theorem 3.3.3 is rather straightforward in the case of constant coefficients

since in this case the operator P = P (D) and the regularization operator commute, that is
(P (D)u)(ε) = P (D)u(ε). Since we are studying an initial value problem, the regularization
is applied only to the space variables in an effort not to destroy the initial condition. Given
u ∈ L2(Q) we have u(ε) ∈ L2(0, T, C∞(Rd)).

In the case of variable coefficients the issue is much more subtle and relies on the
following result, see also see Lemma 11.27 in [RR93]
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Proposition 3.3.5 (Friedrich’s Lemma). Suppose that a ∈ W 1
∞(Rd) and u ∈ L2(Rd).

Then ∥∥∥∥∥
(
a
∂u

∂xj

)(ε)

− a∂u
(ε)

∂xj

∥∥∥∥∥
L2(Rd)

−→ 0 as ε→ 0 , for all j = 1, 2, ..., d .

Corollary 3.3.6. Suppose that a ∈ L∞(Rd) and u ∈ L2(Rd). Then ‖(au)(ε) −
au(ε)‖L2(Rd) → 0 as ε→ 0.

3.4. Differentiable solutions of symmetric hyperbolic systems

Theorem 3.4.1. Suppose that P is symmetric hyperbolic with all coefficients in W 1
∞(Q).

Then the initial value problem Pu = f ∈ H1(Q), u(0, ·) = g ∈ H1(Rd) has a unique so-
lution u ∈ C([0, T ], H1(Rd)) ∩ C1([0, T ], L2(Rd)). Furthermore, the solution satisfies the
estimate

‖u(T )‖H1(Rd) + ‖u‖H1(Q) ≤ CT
{
‖f‖H1(Q) + ‖g‖H1(Rd)

}
The proof of this theorem builds on the techniques developed earlier in this chapter.

At first the a priori estimate

‖e−γTu(T, ·)‖2
1,γ,Rd + γ‖e−γtu‖2

1,γ,Q ≤ C

{
1

γ
‖e−γtPu‖2

1,γ,Q + ‖u(0, ·)‖2
1,γ,Rd

}
is established for all u ∈ H2(Q). For convenience, one uses the weighted norms

‖w‖2
1,γ,Rd = γ2‖w‖2

L2(Rd) +
d∑
j=1

‖∂jw‖2
L2(Rd) and

‖w‖2
1,γ,Q = γ2‖w‖2

L2(Q) +
d∑
j=1

‖∂jw‖2
L2(Q) + ‖∂tw‖2

L2(Q)

After that procedure one invokes Theorem 3.3.3 and regularizes the weak solution u ∈
C([0, T ], L2(Rd)) with respect to the space variable x. The resulting net u(ε) ∈ C([0, T ], C∞(Rd))
satisfies the equation

A0∂u
(ε)

∂t
= −

d∑
j=1

Aj
∂u(ε)

∂xj
−Du(ε) + fε

where fε ∈ H1(0, T ;C∞(Rd)) and ‖fε(t, ·)− f(t, ·)‖L2(Rd) → 0 as ε→ 0 (but fε is not the

regularization of f in x). This gives u(ε) ∈ H1(0, T ;C∞(Rd)). Differentiating the equation
with respect to time can be used to show that u(ε) ∈ H2(0, T ;C∞(Rd)) ⊂ H2(Q). Then
the a priori estimate can be used and establishes the desired regularity of the solution u.

3.5. Finite speed of propagation

Consider the homogeneous wave equation with constant coefficients in R × Rd, that
is utt − c2∆u = 0. A co-vector (τ, ξ) is characteristic if P (τ, ξ) = −τ 2 + c2|ξ|2 = 0, that
is τ = ±c|ξ|. A solution to the initial value problem of the homogeneous wave equation
can be investigated in the following way. Given a given point (t, x) ∈ Q, which values of
the initial data determine the value u(t, x) ? This question can be answered by analyzing
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the explicit solution formula for the initial value problem or by relying on Holmgren’s
uniqueness theorem. The domain of determinacy of (t, x) is the set

M = {x ∈ Rd : |x− x| ≤ ct} .
Indeed, one can show that the solution to the wave equation with initial data equals zero
on M has to be zero at the point (t, x). Another notion is the domain of influence of a
subset (usually a ball) of Rd. Here one investigates (using the same tools) which points
in space time Q the initial data in the given subset influences. The domain of influence
of the ball B(x,R) = {x ∈ Rd : |x− x| < R} is the set

N = {(t, x) ∈ Q : |x− x| ≤ R + tc} .
These concepts carry over to hyperbolic systems. The following discussion is based on a
symmetric hyperbolic system with coefficients in W 1

∞(Q). A each point (t, x) ∈ Q one
defines the characteristic cone

char (t, x) =

{
(τ, ξ) ∈ Rd+1 : det

[
τA0(t, x) +

d∑
j=1

Aj(t, x)ξj

]
= 0

}
and the forward cone

Γ(t, x) = {(τ, ξ) ∈ Rd+1 : wHP1(t, x; τ, ξ)w/i > 0 for all w ∈ CN} .
In other words, the forward cone characterizes all (τ, ξ) ∈ Rd+1 such that the Hermitian

matrix τA0(t, x) +
∑d

j=1 A
j(t, x)ξj is positive definite.

Definition 3.5.1. Let H be a smooth hyper-surface in Q and let n(t, x) be the unit
normal with non-negative first component.
(i) The hyper-surface H is characteristic at (t, x) ∈H if and only if n(t, x) ∈ char (t, x).
(ii) The hyper-surface is spacelike at (t, x) ∈H if and only if n(t, x) ∈ Γ (t, x).

Theorem 3.5.2. Suppose that u ∈ C1(Q) solve the homogeneous equation Pu = 0 in
Q. Furthermore, suppose that L is a lens-shaped region which is bounded by two space-
like hyper-surfaces H and K where the vector n(t, x) on H points into the interior L
and the vector n(t, x) on K points into the exterior of L .

If u ≡ 0 on H , then u ≡ 0 on K .

For the proof we need a multi-dimensional version of Gronwall’s lemma.

Lemma 3.5.3. Suppose that L ⊂ Rd is a region foliated by smooth hypersurfaces Hε

that is L = ∪0≤ε≤1Hε and set

Lθ =
⋃

0≤ε≤θ

Hθ ⊂ L for θ ∈ [0, 1] .

Suppose that u ∈ C1 in a neighborhood of L and that for some C > 0 we have∫
Hθ

|u| dS ≤ C

{∫
H0

|u| dS +

∫
Lθ

|u| dx
}

for all θ ∈ [0, 1]. Then there exists a constant c > 0 such that∫
H1

|u| dS ≤ c

∫
H0

|u| dS .
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3.6. Concluding Remarks

There are many interesting questions which we have not addressed in our discussion
on hyperbolic problems. The initial value problem for constantly hyperbolic systems of
first order can be solved as well. However, in order to obtain the apriori estimates one
needs to construct a symmetrizer which makes the system symmetric hyperbolic. In case
of constant coefficients this can be achieved by means of a Fourier multiplier. In the case
of variable coefficients the symmetrizer is more involved and turns out to be a pseudo-
differential operator. For more information about the topic we refer to the book by S.
Benzoni-Gavage and D. Serre [BGS07] where also initial-boundary value problem for
hyperbolic systems are discussed in details.



CHAPTER 4

Nonlinear equations

This chapter showcases a variety of methods for nonlinear problems and follows Chap-
ters 9, 11 & 3 the book by L.C. Evans [Eva98]. For the last section on conservation laws
we refer also to the book by D. Serre [Ser99]

4.1. Monotonicity methods

Throughout this section we consider the homogeneous Dirichlet problem following
quasilinear PDE in divergence form

−∇ · a(∇u) = f in Ω ,

u = 0 in ∂Ω
(4.1.1)

Here f ∈ L2(Ω) and a : Rd → Rd is a C∞ vector field.

Definition 4.1.4. A vector field a : Rd → Rd is monotone if (a(p)−a(q))·(p−q) ≥ 0
for all p, q ∈ Rd. The vector field a is strict monotone if there exists a constant θ > 0
such that (a(p)− a(q)) · (p− q) ≥ θ|p− q|2 for all p.q ∈ Rd.

Throughout this section we will assume that a ∈ C∞(Rd,Rd) is monotone and that
there exist positive constanct C and α and a non-negative constant β ≥ 0 such that

|a(p)| ≤ C(1 + |p|) and a(p) · p ≥ α|p|2 − β
for all p ∈ Rd. Our goal is to establish the existence of a weak solution to the boundary
value problem above. This will be done by means of Galerkin approximations. Suppose
that {wk}∞k=1 is an orthonormal basis in H̊1(Ω) with respect to the inner product (u, v)1 =
(∇u,∇v)L2(Ω). We will look for a sequence of functions

(4.1.2) um =
m∑
k=1

dkmwk, m = 1, 2, ...

where the coefficients dkm are chosen such that

(4.1.3)

∫
Ω

a(∇um(x)) · ∇wk(x) dx =

∫
Ω

f(x)wk(x) dx

for k = 1, 2, ...,m. At first we will establish the existence of such a sequence. Then we
will try to take the limit as m →∞, establish convergence in some sense and show that
the limit function is the solution to the boundary value problem. In the following we will
abbreviate the closed unit ball in Rd centered at the origin by B, that is B = B(0, 1).

Theorem 4.1.5 (Brouwer’s Fixed Point Theorem). Suppose that w : B → B is
continuous. Then w has a fix point.

25
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Lemma 4.1.6. Let v be a continuous vector field and there exists a r > 0 such that
v(x) · x ≥ 0 for all |x| = r. There there exists an x ∈ B(0, r) such that v(x) = 0.

Proposition 4.1.7. For m = 1, 2, ... there exists a function um defined in formula
(4.1.2) which satisfies the relation (4.1.3).

In order to discuss the limit for m→∞ we need

Proposition 4.1.8. There exists a positive constant C dependent only on Ω and a
such that

‖um‖H̊1(Ω) ≤ C
(
1 + ‖f‖L2(Ω)

)
for m = 1, 2, ....

The existence of a weak solution is formulated in in the following theorem

Theorem 4.1.9. Under the standing assumptions made above, the boundary value
problem (4.1.1) has a weak solution u ∈ H̊1(Ω).

Corollary 4.1.10. If a is in additions strict monotone, then the weak solution is
unique.

4.2. Fixed point methods

Theorem 4.2.1 (Banach). Let A : X → X be an operator on the Banach space X.
Suppose there exists a constant 0 < γ < 1 such that

‖Au− Av‖ < γ‖u− v‖ for all u, v ∈ X .

Then A has a unique fixed point.

Consider now the following semilinear initial boundary value problem for the heat
equation.

ut −∆u = f(u) in QT = (0, T )× Ω ,

u = 0 in ΣT = (0, T )× ∂Ω

u(0, ·) = g in Ω

(4.2.1)

Here g ∈ H̊1(Ω) and f : R → R is Lipschitz, that is, there exists a constant L > 0 such
that |f(x)− f(y)| ≤ L|x− y|.

A weak solution to the boundary value problem (4.2.1) is defined as a function u ∈
L2(0, T ; H̊1(Ω)) with its time derivative ∂u/∂t ∈ L2(0, T ;H−1(Ω)) such that u(0, ·) = g
and (

∂u

∂t
, v

)
[H−1(Ω),H̊1(Ω)]

+ (∇u,∇v)L2(Ω) = (f(u), v)L2(Ω)

for all v ∈ H̊1(Ω and almost everywhere in t for 0 ≤ t ≤ T . Here (·, ·)[H−1(Ω),H̊1(Ω)] denotes

the dual pairing between the dual spaces H−1(Ω) and H̊1(Ω) where L2(Ω) is identified
with its own dual space.

Remark 4.2.2. If u ∈ L2(0, T ; H̊1(Ω)) and ∂u/∂t ∈ L2(0, T ;H−1(Ω)), then u ∈
C([0, T ], L2(Ω)).

With the help of Theorem 4.2.1 one can now prove the following result.
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Theorem 4.2.3. There exists a unique weak solution to the initial-boundary value
problem (4.2.1).

Theorem 4.2.4 (Schauder). Suppose that K ⊂ X is compact and convex and suppose
that A : X → X is continuous. Then the operator A has a fixed point.

Definition 4.2.5. An operator A : X → X is compact, if for every bounded sequence
{xk}∞k=1 ⊂ X the sequence {Auk}∞k=1 has a convergent subsequence.

Corollary 4.2.6 (Schaefer). Suppose that A : X → X is continuous and compact.
In addition, the set {x ∈ X : u = λAu for some 0 ≤ λ ≤ 1} is bounded. Then A has a
fixed point.

Consider now the semilinear elliptic boundary value problem

−∆u+ b(∇u) + µu = 0 in Ω ,

u = 0 in ∂Ω ,

where b : Rd → R is globally Lipschitz.

Theorem 4.2.7. If µ > 0 is sufficiently large, there exists a solution u ∈ H2(Ω) ∩
H̊1(Ω).

4.3. Non-existence

This section serves as an example, that non-linear problem may not be solvable in the
same manner linear problems are. As an example consider the semilinear problem for the
heat equation

ut −∆u = u2 in QT ,

u = 0 in ΣT ,

u(0, ·) = g in Ω .

Theorem 4.3.1 (minimum principle). Suppose that u ∈ C2(QT ) ∩ C(QT ) satisfies
ut −∆u ≥ 0. Then

min
QT

u = min
∂′QT

u

where ∂′QT = ΣT ∪ (Ω× {0}). Furthermore, if there exists a point (t, x) ∈ QT such that

u(t, x) = min
QT

u ,

then u is constant in Qt.

For references on the maximum principle we refer to [Joh91, Chapter 7] and [Eva98,
Section 7.1, Theorem 11].

Lemma 4.3.2. For T > 0 and g ≥ 0 sufficiently large, there does not exist a smooth
solution u ∈ C2(QT ) ∩ C(QT ).

The proof of this lemma relies on Theorem 4.3.1 and on the following fact:
The first eigenfunction w1 of the Dirichlet Laplacian can be chosen to be positive in Ω
[Eva98, Section 6.5, Theorem 2]. (The eigenvalues of the Dirichlet Laplacian are all

positive and have no finite point of accumulation. The function w1 ∈ H̊1(Ω) satisfies
−∆w1 = λ1w1 where λ1 > 0 is the smallest eigenvalue.)
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4.4. Conservation Laws

Throughout this section we discuss the non-linear partial differential system in two
independent variables (t, x)

(4.4.1) ut + F (u)x = 0 (t, x) ∈ R2 .

u = u(t, x) is a vector-valued function with N components and F : RN → RN is a C1

vector field. We will be mainly concerned about the initial value problem

ut + F (u)x = 0 t > 0, x ∈ R ,

u(0, x) = g(x) x ∈ R

4.4.1. Integral solutions and the Rankine Hugoniot condition.

Definition 4.4.1. A function u ∈ L∞(R+ × R;RN) is an integral solution of the
initial value problem above provided∫ ∞

0

∫
R
u · vt + F (u) · vx dxdt+

∫
R
g · v(0) dx = 0 ,

for all v ∈ C∞0 (R2).

Suppose that u is an integral solution of the initial value problem in (0,∞) × R and
that C is a C1-curve in time and space which divides the set (0,∞) × R into Vl and Vr.
If u is continuously differentiable in Vl and Vr then the Rankine-Hugoniot condition

[u]σ = [F (u)] , for all (t, x) ∈ C

holds. Here [u] is the jump of u, [F (u)] is the jump of F (u) across the curve C, and σ
is the speed of the curve C. More specifically, if C = {(t, x) : x = x(t)} with x(t) is
differentiable and

ul(t, x) = lim
Vl3(tn,xn)→(t,x)

u(tn, xn) , ur(t, x) = lim
Vr3(tn,xn)→(t,x)

un(tn, xn) , (t, x) ∈ C

then [u] = ul − ur, [F (u)] = F (ul)− F (ur), and σ(t, x) = x′(t) for (t, x) ∈ C.

4.4.2. traveling waves, hyperbolic conservation laws. Since F is assumed to
be of class C1, a C1 solution of the conservation law (4.4.1) will satisfy

ut = DF (u)ux

where DF =: B is the Jacobian matrix of F . A traveling wave is a function of the form
u(t, x) = v(x− σt) where v is the profile and σ is the speed. In order to be a solution to
the system above one needs

−σv′(x− σt) +B(v(x− σt))v′(x− σt) = 0 ,

in other words, v′ needs to be an eigenvector for the matrix B with eigenvalue σ.

Definition 4.4.2. The system (4.4.1) is strictly hyperbolic, if the matrix B has only
real, simple eigenvalues for all z ∈ RN .
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Theorem 4.4.3. Suppose that u ∈ C1(R2) is a solution to the system ut + B(u)ux
and that Φ : R2 → R2 is a C1 diffeomorphism with inverse Ψ. Then the function
ũ = Φ(u) ∈ C1(R2) is a solution to the system

ũt +B(ũ)ũx

where B(ũ) = DΦ(Ψ(z̃)B(Ψ(z̃)DΨ(z̃) for all z̃ ∈ RN .

Corollary 4.4.4. If the matrix B is strictly hyperbolic, so is the matrix B̃.

In the strictly hyperbolic case we denote the eigenvalues by λ1(z) < λ2(z) < ... <
λN(z) and denote a right eigenvector corresponding to the eigenvalue λk(z) by rk(z).
Similarly, a left eigenvector is denoted by lk(z). We have

B(z)rk(z) = λk(z), BT lk(z) = λk(z), lk(z)·rj(z) = 0 for all k = 1, 2, ..., N and j 6= k .

The next theorem states that the eigenvalues and the eigenvectors are C1 functions as
long as the entries of B are of class C1.

Theorem 4.4.5. Suppose that B ∈ C1(RN) and that B is strictly hyperbolic. Then
λk ∈ C1(RN) and there exist left and right eigenvectors lk ∈ C1(RN) and rk ∈ C1(RN)
which satisfy also

|rk(z)| = |lk(z)| = 1 for all k = 1, 2, ..., N and z ∈ RN .

4.4.3. The Riemann Problem. The following initial value problem

(4.4.2) ut + F (u)x = 0 in R+ × R u(0, x) =

{
ul for x < 0
ur for x > 0

,

is known as Riemann problem. Here ul and ur are different constant vectors. We consider
at first the case N = 1. In this case the initial value problem can be solved using charac-
teristics. The curve y(s) = (t(s), x(s)) is a characteristic if a solution to the conservation
law u is constant along this curve, i.e. u((t(s), x(s)) = const.. Using the chain rule, one
obtains

ut(y(s))t′(s) + ux(y(s))x′(s) = 0

which in view of (4.4.2) suggests that t′(s) = 1 and x′(s) = F ′(u(s)). With the initial
value problem in mind we obtain the family of curves y(t) = (t, F ′(g(x0))t+ x0) where g
denotes the given initial values and x0 ∈ R. Each of these curves originates at the point
(0, x0).

If every point in the upper half plane Rt×R lies exactly on one of these characteristic
curves, then a (global) unique solution to the initial value problem may be found. Note
that due to the non-linearity, the characteristics depend on the initial data. However, as
long as the initial data are smooth, the initial value problem for a scalar conservation law
can be solved for small times.

More precisely, one can show that for each g ∈ C1(R) there exists a T ∗ > 0 such that
, the initial value problem

(4.4.3) ut + F (u)x = 0 in R+ × R u(0, x) = g(x)

has a unique classical solution u ∈ C1([0, T ∗) × R). At T ∗ two characteristics starting
from different points (0, x) and (0, y) may intersect which will produce a discontinuity.
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Riemann problems are more difficult since the initial data are not continuous. It may
occur that the family of characteristics does not cover the upper half plane. On the other
hand there may be intersections of two different characteristics for any t > 0. Crossing
characteristics lead to the formation of shocks, whereas the first phenomenon does not
allow a unique solution. In this case one is forced to add an additional condition (entropy
condition) which leads to a solution in form of rarefaction waves.

A continuous, convex function e is called an entropy and the function

f(s) = F ′(s)e(s)− F ′(0)e(0)−
∫ s

0

F ′′(y)e(y) dy

is called the corresponding entropy flux. If e is differentiable we have f ′ = F ′e′.

Definition 4.4.6. An integral solution u is an entropy solution, if for each pair of
entropy and entropy flux (e, f) and for all ϕ ≥ 0, ϕ ∈ C∞0 (R2) the inequality∫ ∞

0

∫
R
[e(u)ϕt + f(u)ϕx]dxdt+

∫
R
e(g(x))ϕ(0, x) dx ≥ 0

holds.

The motivation for this definition is connected with the so-called viscosity solutions.
Instead of (4.4.2) one considers for small, positive ε the equation

(4.4.4) ut + f(u)x = εuxx t > 0, x ∈ R .

This is a parabolic equation and one can show that the initial value problem for this
equation with initial data

u(0, x) = g(x) x ∈ R
has a unique classical solution which satisfies the maximum principle.

Lemma 4.4.7. Suppose that g ∈ C(R) is a bounded function and denote the classical
solution of the initial value problem to equation (4.4.4) by uε. Suppose that uε(t, x) →
u(t, x) ∈ L∞(R+ × R) almost everywhere. Then u is an integral solution to the initial
value problem for the conservation law ut + F (u)x = 0.

The most important entropy - entropy flux pair is given by the functions

e(u) = |u− k| and f(u) = [F (u)− F (k)]sgn(u− k) k ∈ R
where

sgn(z) =

 1 if z > 0
0 if z = 0
−1 if z < 0

.

Hence the every entropy solution satisfies the inequality

(4.4.5)

∫
Q

{ϕt|u− k|+ ϕx[F (u)− F (k)]sgn(u− k)} dxdt+

∫
R
|g(x)− k|ϕ(0, x) dx

for all ϕ ≥ 0, ϕ ∈ C∞0 (R2) and k ∈ R. Somewhat surprisingly, the converse is true as
well.

Proposition 4.4.8. The function u ∈ L∞(R+×R) is an entropy solution to the initial
value problem for the conservation law (4.4.4) with g ∈ L∞(R) if and only if inequality
(4.4.5) holds for all k ∈ R and ϕ ≥ 0, ϕ ∈ C∞0 (R2)
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In case of a uniformly convex function F , the solution to the Riemann problem in the
case N = 1 can be given explicitly.

Theorem 4.4.9. Suppose that F is uniformly convex, that is F ′′(z) ≥ θ > 0 for some
constant theta > 0.
1.) If ul > ur, then the unique solution to the Riemann problem (4.4.2) is

u(t, x) =

{
ul if x/t < σ
ur if x/t > σ

,

where σ =
F (ul)− F (ur)

ul − ur
.

2.) If ul < ur, then the unique entropy solution to the Riemann problem (4.4.2) is given
by

u(t, x) =

 ul if x/t < F ′(ul)
G(x/t) if F ′(ul) < x/t < F ′(ur)
ur if x/t > F ′(ur)

,

where G is the inverse function of F ′.

The first solution has a discontinuity along the straight line x = σt which is a shock
front moving with velocity σ. The second solution is continuous and is referred to as
a rarefaction wave. If a entropy solution is discontinuous along a differentiable curve
(t, x(t)), then the inequality

(4.4.6) F ′(ul) ≥ x′(t) ≥ F ′(ur)

holds. This is the Lax shock condition which expresses the fact, that shock occur only
when characteristics starting at (0, x) and (0, y) intersect for some t > 0. Here x 6= y. The
Lax shock condition prohibits that two characteristics passing through the points (t, x)
and (t, y), respectively, for some t > 0 intersect for some smaller positive t̃.

Now we discuss the Riemann problem for N > 1. In this case we look for a simple
wave solution, that is a solution of the form u(t, x) = v(w(t, x)) where v : R→ RN and
w : R+ × R→ R. Going with this ansatz into the equation (4.4.2) gives

v′(w)wt +DF (v(w))v′(w)wx = 0 .

Hence, for some k ∈ {1, ..., N} the functions v and w need to solve the equations

v′(s) = rk(v(s))

wt + λk(v(w))wx = 0
(4.4.7)

In this case we call u a k-simple wave. Note that the second equation in (4.4.7) represents
a scalar conservation law.

In what follows we will investigate the conditions which are needed to produce a con-
tinuous solution to (4.4.2). For that purpose we define for all z ∈ RN the kth rarefaction
curve Rk(z) as the solution to the first equation in (4.4.7) which passes through z.

With Fk(s) =
∫ s

0
λk(v(t)) dt we consider the Riemann problem for the scalar conser-

vation law wt + Fk(w)x = 0. This problem can be solve using Theorem 4.4.9 as long as
Fk is uniformly convex or uniformly concave.

Compute
F ′′k (s) = ∇λk(v(s)) · v′(s) = ∇λk(v(s)) · rk(v(s)) .
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Definition 4.4.10. The pair (λk, rk) is genuinely non-linear if ∇λk(z) · rk(z) 6= 0 for
all z ∈ RN . The pair is degenerate linear if ∇λk(z) · rk(z) = 0 for all z ∈ RN .

Theorem 4.4.11. Suppose that the pair (λk, rk) is genuinely non-linear for some k ∈
{1, ..., N} and that

ur ∈ R+
k (ul) = {z ∈ Rk(ul) : λk(z) > λk(ul)}

Then there exists a continuous integral solution to (4.4.2) which is a k-simple wave which
is constant along the rays emanating from the origin.

Definition 4.4.12. For a given z ∈ RN , the set

S(z) = {z ∈ RN : F (z)− F (z) = σ(z − z)}

is the shock set. Here σ = σ(z, z) is a real number.

Proposition 4.4.13. For all z ∈ RN there exists a neighborhood U (z) such that

S(z) =
N⋃
k=1

Sk(z) ,

where each Sk(z) is a smooth curve and
(i) the vector rk(z) is tangent to the curve Sk(z) at the point z.
(ii) lim

z→z
σ(z, z) = λk(z)

(iii) For z ∈ Sk(z) and z → z we have

σ(z, z) =
λk(z) + λk(z)

2
+O(|z − z|2) .

Proposition 4.4.14. Suppose that for k ∈ {1, ..., N} the pair (λk, rk) is linear degen-
erate. Then, for all z ∈ RN we have Rk(z) = Sk(z) and σ(z, z) = λk(z) = λk(z) for all
z ∈ Sk(z).

If the pair λk, rk) is linear degenerate and ur ∈ Sk(ul), then the function

(4.4.8) u(t, x) =

{
ul for x < σt
ur for x > σt

with σ = σ(ur, ul) = λ(ul) = λ(ur) is a solution to the Riemann problem. This solution
is referred to as contact discontinuity.

If the pair (λk, rk) is genuinely nonlinear and ur ∈ Sk(ul), then the function (4.4.8)
with σ = σ(ur, ul) is an integral solution. However, two cases have to be distinguished,
λk(ul) < λk(ur) and λk(ul) > λk(ur). Because of Proposition 4.4.13 we have in the first
case

λk(ul) < σ(ur, ul) < λk(ur)

and in the second case

λk(ul) > σ(ur, ul) > λk(ur) .

Note that the first inequality contradicts the Lax shock condition (4.4.6). The first case
is a non-physical shock and will be discarded.
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Definition 4.4.15. Suppose that the pair (λk, rk) is genuinely nonlinear. The pair
(ul, ur) is admissible if and only ifur ∈ Sk(ul) and λk(ul) > σ(ur, ul) > λk(ur). Then the
solution (4.4.8) is a k-shock wave.

Definition 4.4.16. Suppose that the pair (λk, rk) is genuinely nonlinear. Then

S+
k (z) = {z ∈ Sk(z) : λk(z) < σ(z, z) < λk(z)}
S−k (z) = {z ∈ Sk(z) : λk(z) < σ(z, z) < λk(z)}
Tk(z) = R+

k (z) ∪ {z} ∪ S−k (z)

With this definition one observes that the pair (ul, ur) is admissible if and only if
ur ∈ S+

k (ul). If the pair (λk, rk) is linear degenerate, then Tk(z) = Rk(z) = Sk(z).

Theorem 4.4.17. Suppose that for each k ∈ {1, ..., N} the pairs (λk, rk) are either
genuinely nonlinear or degenerate linear and that ul is given. Then, for ur sufficiently
close to ul there exists an integral solution to the Riemann problem (4.4.2) which is con-
stant on lines through the origin.
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